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ABSTRACT: The ORNL XT3 system has had numerous upgrades since it was built in 2005, taking it from a 56
cabinet single core XT3 system to a 124 cabinet, dual core XT3/XT4 combined system. Along the way the HPCC
benchmark suite has been used to evaluate system performance. We will show and analyze the results from these

benchmark runs and discuss the implications upon application writers.
KEYWORDS: CRAY XT3 XT4 HPCC BENCHMARK PERFORMANCE

1. Introduction

In the proceedings of CUG2006 we published a
paper evaluating the performance of the HPCC
benchmark suite on the Cray XT3, jaguar, and
newly-upgraded Cray XIE, phoenix,
supercomputers at the Center for Computation
Sciences (CCS) at Oak Ridge National Laboratory
(ORNL). Although phoenix has remained
unchanged since this paper was published, jaguar
has undergone significant changes. It has been
upgraded from a single-core XT3 system to a
combined dual-core XT3 and XT4 system. This
paper revisits HPCC on jaguar and discusses the
effect that the past year’s system upgrades have had
on overall performance.

2. Machine Descriptions

2.1. Cray XT3/XT4

The Cray XT4 supercomputer’ is an
evolutionary descendant of the Cray XT3 ', Cray's
third-generation MPP system. The XT4 includes an
upgrade to the SeaStar network and system
memory, as outlined below. The XT3/XT4
supercomputers are focused on high scalability and
sustained application performance. Their principal
attributes are balanced system performance,
usability, scalability, and ease of upgrade.

The Cray XT4 can be constructed with as many
as tens of thousands of nodes, or PEs, configured as
either compute nodes or service nodes. Each node
includes a 64-bit AMD Opteron processor with
dedicated memory and a data routing resource. The
Cray XT4 uses a simple memory model in which
applications are distributed across any number of
nodes, each node with its own processor and local
memory, no shared memory. The XT3 used

DDR400 memory parts which can deliver up to 6.4
GB/second bandwidth, more than 1 byte per flop
per processing element. The XT4 uses more recent
Opterons, which include a DDR2 memory
controller. By upgrading to DDR2 memory, the
effective memory bandwidth to each processor core
improves from 6.4 GB/s for DDR-400 memory to
10.6 GB/s for DDR2-667 memory and 12.8GB/s for
DDR2-800 memory. It has a very low memory
latency of near 50 ns, benefiting performance
algorithms that require irregular memory access
patterns.

Each node communicates with the rest of the
system via a high bandwidth, low-latency 3-D torus
interconnect network. The processor is connected
directly to the interconnect via a HyperTransport
link to the Cray SeaStar communication processor
and router chip. The SeaStar is designed to offload
communications overhead from the Opteron
processor to increase application efficiency and
accelerate communications. The Opteron has a
bidirectional injection bandwidth of more than 2
GB/s to and from the SeaStar chip, while each
SeaStar can sustain a bandwidth of 6.5 Gbytes/s on
each of the six links, one in each direction of the 3-
D torus. The Cray XT4 uses the next-generation
SeaStar2 interconnect, which is link-compatible
with SeaStar, but nearly doubles the injection
bandwidth.

The Cray XT3/XT4, like previous Cray MPP
systems, uses a microkernel on its compute PEs
called Catamount to minimize system overhead and
in turn reduce "jitter". The general rule is that the
microkernel only runs when it is working on behalf
of the application. Catamount eliminates SMP
overhead, paging, and spurious daemons, ensuring
high, reproducible performance. As the XT3
supercomputers were upgraded from single to dual-



core processors, Catamount had to be modified to
support the additional core. This was done through
virtual node mode, which gives half of the memory
to each core and assigns a master node to handle
interrupts and communications. The effects of this
OS design on benchmark results are discussed later
in this paper.

For the benchmarks, we compare last year’s
software stack of PGI 6.1 compilers, ACML 3.0
BLAS, and MPT 1.3 message passing libraries
versus this year’s stack of PGI 6.1, ACML 3.6, and
MPT 1.5.

3. HPCC Benchmark Description

The HPC Challenge benchmark suite”'? tests
multiple system attributes which exhibit substantial
impact on the real-world performance of
applications on HPC systems. The design goal for
HPCC was to augment the venerable LINPACK
benchmark with additional tests to support a
broader analysis of HPC architectures. Additionally,
since locality of reference can be a dominating
factor in software performance on modern
architectures, the selected tests examine how the
architecture performs for high and low degrees of
both spatial and temporal locality (see Figure 1).
Collectively, the tests provide performance
indicators for processing power, interconnect, and
memory system performance. To do this, the test
suite needed to use kernels that reflect real-world
patterns of memory access and interprocessor data
exchange. The resulting suite includes 23 tests in
eight categories, and stresses not only the
processors, but also the memory system and the
interconnect maps each test category to the aspects
of the HPC system it evaluates.

3.1. Network Parameterization

There are several different approaches to
characterizing interconnect performance for HPC
systems. The most thorough approach attempts to
map the “performance surface” for several to all of
the MPI data exchange routines as the processor
count and message size are independently varied.
The results are reported variously as either
bandwidth or time, dependent on whether the
concept of bandwidth is well defined for the

operation in question. While this approach is the
most thorough, performing the required tests to a
high degree of accuracy is resource intensive. A
simpler method which attempts to characterize the
zero-byte message latency and the asymptotic
bandwidth runs much faster and provides much of
the same information, since more complex MPI
operations can be understood in terms of these
fundamentals. For instance, we can approximate the
time for a single communication as:

time = latency + bandwidth*(message size)

Though this simplistic model fails to
characterize performance inflections which indicate
points at which the MPI libraries transition from
one algorithm to another (e.g. Eager vs.
Rendezvous), it captures enough of the essential
character of the interconnect to indicate its impact
on latency sensitive or bandwidth sensitive
applications. HPCC takes this abbreviated approach
of measuring latency and bandwidth, but recognizes
that the communication pattern can play a role in
determining these factors. Thus, the latency and
bandwidth are measured for three different
fundamental communication patterns.

3.1.1. PingPong

This is the most basic communication pattern
and involves a simple send-receive exchange
between two processors. While frequently you will
see vendors publish results for the MPI PingPong
Latency test, as it is relatively easy to measure, the
MPI test measures a transfer of only 1 byte between
only 2 processors in a system. Additionally, because
latency and bandwidth vary for some interconnect
topologies depending on the number of network
hops between the sending node and the receiving
node, HPCC reports not only an average PingPong
time, but also the minimum and maximum
PingPong times. The minimum PingPong time will
be representative of the latency and bandwidth to an
MPI task running on the same node for systems
which run multiple MPI tasks per node or to an MPI
task running on the nearest network neighbor for
systems which run only a single MPI task per node.

3.1.2. Natural Ring



The Natural Ring test uses a more realistic
scenario where all processors in the system
communicate =~ with  their = “neighbors”, at
approximately the same time. However, it should be
noted that “neighbors” in the context of the
benchmark are defined as MPI tasks whose ranks
differ by one. Thus, for larger SMP nodes,
“neighbors” are likely a task on the same node,
whereas for uniprocessor nodes, “neighbors” are at
least one network hop away. In systems with SMP
nodes, as the processor count per node increases,
this benchmark becomes increasingly weighted
towards reflecting the latency and bandwidth within
a node. Codes parallelized with domain
decomposition generally represent the
decomposition in one of the dimensions as adjacent
MPI ranks with the communication in this
dimension mapping well to the Natural Ring
communication pattern.

3.1.3. Random Ring

The Random Ring test is similar to the Natural
Ring, except that the order of the ring is
"randomized" so that each processors 'ring
neighbor" is neither its logical neighbor as ordering
in the MPI communicator, nor its physical neighbor
in the machine, instead it is a processor chosen at
random in the system. While some applications do
perform communication between random nodes,
even more regular problems exhibit some behavior
consistent with the Random Ring pattern, as is the
case for domain decomposition in multiple
dimensions. Specifically, only one of the
dimensions can be represented by adjacent MPI
ranks, and thus the others may be more
topologically remote, mapping well to the Random
Ring pattern.

Codes that send many small messages are very
latency sensitive. For example the widely used
ocean modeling code, Parallel Ocean Program
(POP) from Los Alamos National Laboratory, and
LS-DYNA engineering software from Livermore
Software Technology Corp. (LSTC) are highly
dependent on global summations, which require the
processors to communicate frequently with small
messages. The computing system’s latency is a
significant factor in how well POP or LS-DYNA

will run on that system, and therefore, Random
Ring latency is a good predictor of real world
performance for applications that place heavy
demands on simultaneous communications.

3.2. Spatial vs. Temporal Locality of

Reference

The design of the HPCC benchmarks
acknowledges that applications vary in the type and
magnitude of the data locality intrinsic to their core
algorithms. Two types of locality are recognized:
temporal and spatial. Temporal locality refers to the
likelihood of a single memory address being
referenced several times in a short period, whereas
spatial locality refers to the likelihood of adjacent
memory addresses being referenced in a short
period of time. Since these two types of locality are
orthogonal, one can locate any algorithm on a 2D
plot of spatial-temporal locality diagram (STLD)
(see Figure 1). 12 of the HPCC tests were selected
because of their correspondence to the corners of
this space, and the performance of these 12 tests
provides us with a clearer picture of how the full
application space will map to the architecture, than
would be possible with but a single benchmark.
(See Figure 1).
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Figure 1: Spatial-Temporal Locality Diagram

3.3. Serial vs Embarrassingly Parallel vs
Global
In addition to varying the spatial and temporal
locality, the HPCC benchmark also recognizes three
levels of parallelism. First, a serial (“SP” or
“single™) test involves only one processor running
the test. Second, an embarrassingly parallel (“EP”
or “*”) test is run simultaneously by each of the



processors, though without any communication
required between the processors. And third, a
globally parallel (“G”) test is run in which all of the
processors collaborate on a single test requiring
communication. Thus, for each of the four corners
of the STLD (Figure 1), we characterize the
architecture's performance for each of three levels
of parallelism creating a total of 12 application
kernels.

3.4. High Spatial and High Temporal
Locality

Dense linear algebra was chosen to represent
those algorithms which exhibit both high spatial
locality and high temporal locality. DGEMM
measures the floating point execution rate of double
precision real matrix-matrix multiplication in
GigaFLOPS per second (GFLOPS) using the
DGEMM BLAS library routine in both SP and EP
mode. DGEMM  de-emphasizes =~ memory
performance relative to CPU performance and the
timed kernel of the benchmark does not use the
interconnect. DGEMM is useful as a measure of the
very best performance one could ever achieve on
highly computational intensive codes.

The High Performance LINPACK test (HPL) is
used for the global test in this quadrant. It primarily
tests processor performance and is included in this
suite to allow comparison with the Top 500 list,
which is based on the very same test. HPL solves a
randomly generated dense linear system of
equations in double floating-point precision (IEEE
64-bit) arithmetic using MPI and is measured in
teraflops, or trillions of calculations per second
(TFLOPS). HPL has the enviably characteristics of
being very computationally intensive as well as
requiring relatively little local or global memory
bandwidth. As a result, many systems can sustain
70-80+% of the theoretical peak floating point
performance. Results for DGEMM correlate
strongly with per CPU HPL results.

3.5. High Spatial and Low Temporal Locality

Algorithms dominated by data movement were
chosen to represent those algorithms which exhibit
high spatial locality but low temporal locality. The
STREAM benchmark was chosen for the SP and EP

tests in this quadrant. STREAM is a simple
synthetic benchmark that measures sustainable
memory bandwidth to local memory, in Gigabytes
per second, and the corresponding computation rate
for a simple vector kernel. STREAM provides a
good approximation for high memory bandwidth
codes. It is worth noting that STREAM assesses
bandwidth to memory only, and does not stress
interprocessor communications, or I/O
communications. For the global benchmark in this
quadrant a parallel matrix transposition is used. The
PTRANS (parallel matrix transpose) benchmark
implements a parallel matrix transpose for two-
dimensional block-cyclic storage. This is an
important benchmark because it exercises the
communications of the computer heavily on a
realistic problem where pairs of processors
communicate with each other simultaneously.
PTRANS is a useful test of the total
communications capacity of the network, measured
in gigabytes per seconds (GB/s).

Several molecular dynamic codes and most
climate models must transpose large arrays to
perform multi-dimensional Fast Fourier Transforms
(FFTs), relying heavily on the processor’s ability to
exchange data quickly. Applications such as CPMD
(a computational chemistry code that simulates
static and dynamical properties of solids, liquids
and disordered systems), FPMD, and VASP
molecular dynamics simulation codes and climate
spectral models, are most likely to perform well on
systems that do well on the PTRANS benchmark.

3.6. Low Spatial and High Temporal Locality

Fast Fourier Transform algorithms were chosen
to represent those algorithms which exhibit low
spatial locality but high temporal locality. The FFT
test measures the floating point rate of execution of
complex one-dimensional Fast Fourier Transforms
in double precision. The FFT is performed in each
of the three (single, EP, global) modes. The global
FFTE exercises the computation and the all-to-all
communications capabilities of the computer,
providing a useful test of the total communications
capacity of the computers network, or interconnect.
It is measured in Gigaflops per second.

3.7. Low Spatial and Low Temporal Locality



This quadrant is the newest frontier of scientific
algorithm research, including graph theory and
adaptive mesh refinement (AMR). Excelling in this
quadrant is challenging for most modern computers
since the locality constraints provide few
opportunities to amortize memory latency. A graph
theory kernel called RandomAccess (RA) was
chosen to represent those algorithms with both low
spatial and low temporal locality. The Random
Access test measures the rate at which the computer
can update pseudo-random locations of a large table
stored in its memory, expressed in billions (giga) of
updates per second, or GUPS. By testing gather-
scatter functions, the Random Access kernel
provides an indication of how codes (including
graph theory and AMR) which access data
structures in more random patterns, will perform on
a given system. The RA benchmark is run in single
(one table on a single node), EP (each node with its
own table) and global (one large table spanning all
nodes) modes.

4. Results and Discussion
4.1.Network Parameterization

The HPCC benchmark measures latency and
bandwidth for a two task Ping Pong pattern, and
two ring patterns, one ordered naturally as implied
by the MPI task ranks and one ordered randomly.
For the Ping Pong test, multiple pairs are tested and
reported as a minimum, average and maximum for
both the latency and bandwidth. For a system built
on single processor nodes with a reasonably good
mapping of MPI tasks to nodes, one would expect
the latency and bandwidth for the Natural Ring to
closely track those of the Ping Pong test since the
minimum latency and maximum bandwidth would
typically be observed between nodes which fall
closer together within the network. Whereas the
Random  Ring  test  typically  generates
communications between MPI tasks ranks that are
further apart, and hence between nodes that are
further apart within the network. The latency and
bandwidth results on the Cray XT3 and XT4, fail to
follow this pattern (Figures 3 and 4). The Natural
Ring latency and bandwidth track more closely with
the Random Ring latency and bandwidth rather than

the Ping Pong latency and bandwidth. Thus the task
placement, the mapping of MPI task ranks to nodes
on the network, behaves less like an expected good
placement and more like a random placement, i.e.
the placement is far from optimal. It should be
noted that while the XT3/XT4 behavior is not
optimal, it is typical of the majority of the results
available at the HPCC results website'?.

The cause of these results is apparent from the
manner in which the nodes, cabinets, and rows
within the Cray XT3/XT4 system are numbered
sequentially in each of these directions, presumably
to simplify locating individual hardware
components by physical location for maintenance.””
However, to minimize the maximum cable length,
the wiring within the cabinets and between cabinets
down a row are cabled in a serpentine fashion — in
each of these directions, the odd numbered nodes
are linked in a chain and the even nodes are linked
in a chain, then the chains are linked at the ends.
Thus, with the exception of those nodes which are
the endpoints linking the odd and even chains,
nodes which are physically adjacent to each other,
are topologically remote, potentially opposite each
other on a torus ring. Thus, nodes allocated and
mapped sequentially (according to physical
position) when provisioning resources for a job, will
be topologically remote from each other in the
network, giving rise to the observed behavior.
Furthermore, as multiple jobs are provisioned, the
overall impact will be to interleave jobs among each
other on the torus, causing the majority of the node
to node links to be shared by more than one job.
Also worth noting is that the latencies increase and
the ring bandwidths decrease as the processor count
increases. The latency increase is easily explained
by the increasing network hop count required to
span the larger job configuration. The bandwidth
decrease is less intuitive, but in the case of the
Random Ring test, is not difficult to imagine the
ring wrapping back on itself due to the random
place of tasks, leading to contention for the links.
Because of the placement problems noted
previously, the Natural Ring pattern is similarly
impacted, though to a lesser extent. It should be
noted that the benchmarks were not run on a



dedicated system and the scattered placement
implies that nodes belonging to other jobs are likely
to be interspersed within the nodes for the
benchmark jobs as an additional source of link
contention.
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Figure 2a-b: XT3 and XT4 latencies.

When comparing the results from the XT4, one
will notice that both latencies and bandwidth
improved over the XT3. The improved latency may
be as much due to software improvements since the
original XT3 benchmarks were run as they are due
to the newer interconnect. The doubled injection
bandwidth of the SeaStar2 NIC is clearly evident in
Figure 3b. We still observe that rank ordering
negatively affecting both benchmarks.
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4.2.High Spatial and High Temporal
Locality

4.2.1. DGEMM

Figure 4 shows both the SP and EP performance
of the DGEMM benchmark on the XT3 and XT4.
The charts clearly show the higher clock frequency
of the XT3 dual-core upgrade and the XT4. We
observe the expected performance improvement
from the minor clock speed increase.
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4.2.2. HPL

The results from the HPL benchmark are
likewise exactly as expected: the slight increase in
clock speed gives a slight improvement in
performance. Overall performance improved both
when looking at a per-core or per-socket level.
Figure 5b shows HPL results when normalized to
the theoretical peak performance. On each system
tested we were able to achieve greater than 80% of
peak. The XT4-SN benchmark received roughly
half of the performance of the XT4-VN
performance, which is exactly what one would
hope.
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4.3.High Spatial and Low Temporal
Locality

4.3.1. STREAM

The STREAM benchmark measures memory
bandwidth. Figure 6 shows both the SP and EP
versions of the STREAM benchmark. Notice that
the DDR2 memory of the XT4 achieves higher
bandwidth than the DDR memory of the XT3. The
EP graph shows a very clear indication of a memory
bottleneck when using both cores of a dual-core
processor. While the AMD Opteron has two general
purpose computational cores, they share a single
memory subsystem. The graphs in Figure 6 clearly
show that for both the XT3 and XT4, one core is
capable of saturating the memory subsystem and
dual core bandwidth suffers as a result.
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Figure 6a-b: STREAM SP and EP performance.

4.3.2. PTRANS

The PTRANS benchmark performs a parallel
matrix transpose, much like those needed by
applications that require large FFT operations. The
single core performance is greater than the dual-
core performance and the XT4 performance is
slightly higher than XT3 performance due to the
improved injection bandwidth.
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4.4.Low Spatial and High Temporal
Locality

4.41. FFT

Figure 8 shows the SP and EP FFT performance
on the XT3 and XT4. It is important to note that the
results labeled X73 appear to be anomalous and
should be disregarded. While we cannot fully
explain why these results were greater than the
other results, it is most likely a difference in system
software or benchmark configuration. The improved
memory bandwidth clearly gives improved
performance in the SP benchmark. The EP
benchmark results show the memory controller
bottleneck on a dual-core Opteron, but the dual-core
results are still an over-all win and the XT4 dual-
core results are slightly better than the XT3 dual-
core results.
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4.4.2. MPI-FFT

The MPI-FFT benchmark extends the FFT
benchmarks to the entire system. The benchmark
shows very favorable results that are similar, but
slightly lower-performing, as the HPL benchmark.



While the single-core results are better than the
dual-core results on a core-by-core comparison,
when comparing on a socket-by-socket level the
dual-core performance is slightly better. Thus the
dual-core processor does provide a benefit in
kernels with high temporal locality.
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4.5. Low Spatial and Low Temporal
Locality
4.5.1. RandomAccess

Figure 10 shows the results of the
RandomAccess benchmark for both SP and EP
mode. The SP graph shows that the faster memory
gives the XT4 better RandomAccess results. As
with the STREAMS results, the EP results show the
bottleneck of the Opteron’s single memory
controller.
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Figure 10a-b: RandomAccess SP and EP results

4.5.2. MPI-RandomAccess

The MPI-RandomAccess results are below. The
graphs show a slight improvement in performance
between the single-core XT3 and XT4 results,
which may result from the increased injection
bandwidth from the XT4 nodes or simply due to
software improvements during this time. Dual-core
results for XT3 and XT4 are virtually identical and
universally worse than single-core results.
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Figure 11a-b: MPI-RandomAccess results and normalized
results

5. Conclusions

Several conclusions over the utility of multi-
core processors arise from examining the HPCC
results on the XT3 and XT4. For both EP and
Global results, we note that multi-core processors
deliver improved performance for those
benchmarks with high temporal locality — almost a
doubling over single-core results. On the other
hand, those benchmarks with low temporal locality
see little if any benefit from engaging a second core
on a node. Though the design of the HPCC
benchmark doesn’t encourage direct comparison of
results from differing corners of the STLD, we see
that increasing or decreasing spatial locality (while
holding temporal locality constant) has a very
limited impact on the overall performance per
socket, since the memory controller, channels, and
DIMMS are shared. Increasing spatial locality for
codes with high temporal locality, however, will
have a greater effect on performance than codes
with low temporal locality.

In most cases the faster memory and improved
injection bandwidth gave improved results, as
expected. Codes that rely heavily on memory or
network bandwidth will likely see increased
performance when migrating from an XT3 to an
XT4 system.

6. Future Work

The Center for Computation Sciences at ORNL
has a very aggressive plan to continue system
upgrades and new installations over the next several

10

years”.  We will continue to use the HPCC

benchmark suite to evaluate each of these systems
and report our finding where appropriate.
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